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Asymptotic Evaluation
Summary

“ Large ~: Residue series
* Small & Power series in inverse Powers of ~

leading to a
● If q is large,

convergent

c For large q,

series of positive powers of ~

the power series is poorly
unless & is extremely small.

Wait and Bremmer obtain a
“sma[[ curvature” approximation via the
Laplace transform BUT,
– One must find the zeros of high degree polynomials.
- One must find these zeros efficiently if the approximation

is to be useful.

● QUESTIONS:
- HOW can one find the q’s efficiently?
- How does the approximation improve as the number of

q’s is increased?



First approximate:

Note that:

1-

co - m-4

C1-C2-m

c~ - C4

Recall that !RPA is a polynomial

-- m2

for appropriate even integer, p,

Now factor RPA as follows.

!RP’2 [ (R+



If T - %2, each factor is quadratic:

1

If~-!R2+— each factor is cubic:
2X’

1 1
Ifr-!R2+ —+— each factor is sixth degree:

2X ~R4’

etc.
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If the R3 term is neglected~

Also, then,

(-$E)/ [ FE + ddc3c4

.
●

(FE + iE
I

. ~-1 - ~-17/4

1/4 -3/4-m

. ~-2

I
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ASYMPTOTIC REPRESENTATIONS
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Concluding Summary

This approximation
good starting point

technique yields very
for iterative solution.

- Four significant figures in about two to five iterations.
- Computation time almost negligible.

As more terms are used:
- Four basic roots persist.
– Added roots cluster arount the origin yielding slowly

varying terms.
- Approximation is ~~. in mid-range of the Fock

parameter via the added slowing varying terms.


